*****
Hercules parked inside his hangar, where he can be worked on and protected from the elements during transit. |
Hercules was built in 2002, was tested and finished in 2003, and his first mission took place in summer 2003 on the R/V Knorr. He can dive up to 4000 meters (13,124 ft) deep. He is 2.3 meters (7.5 ft) high by 1.8 meters (6 ft) wide by 3.4 meters (11 ft) long. He weighs 5500 pounds (or more, depending on the scientific equipment added to him), but because of the foam that has been added to him, he has about 30-50 pounds of positive buoyancy, adjusted each dive based on equipment (with lead blocks).
Hercules can descend and ascend at a rate of 30 meters per minute. His maximum transit speed is 1 meter/second (2 knots), and his maximum on-bottom transit speed is 0.5 meters/second (1 Knot), with no sampling occurring.
Hercules is able to collect samples and manipulate various scientific equipment using his Predator arm. It is quite a versatile piece of equipment, as it does both heavy lifting and performs delicate maneuvers to manipulate instruments and collect samples. It is controlled by a multijointed joystick in the control van. Some of the actions on the joystick used to give force feedback to the operator, meaning he or she could actually feel resistance when trying to lift or maneuver heavy objects. But a key component for that system broke, and OET opted not to fix it. It's just as well, reports one of the ROV pilots, because it created power-hogging issues.
This is Mongo, the work horse arm that serves as a backup, and is used for positioning big and heavy equipment so that the Predator arm can interact with it. Being that Mongo is big and clumsy, it is not the preferred arm for collecting samples.
There are 6 thrusters aboard Hercules to help him move. He can move up and down and side to side, but he does not have the ability to pitch or yaw. The top thruster pictured here (black) makes Herc move up and down. The bottom one in the photo (with the yellow grate in front of it) moves the ROV from side to side.
The "brains" of Herc are contained within this titanium tube. The tube alone, just in terms of material and engineering, is worth about $50,000! All of the wires emerging from the brains are contained within the yellow hoses you see here. The wires go out to all of the sensors and cameras and lights throughout the vehicle. But first, they are split into two portions, each of which goes to a junction box on one side or the other of the ROV (next photo).
The wires that you saw emerging from the “brains” in the last photo are routed to two different junction boxes, one on each side of the ROV. This photo shows the starboard side junction box, containing half of the wires that have come out from the brain. It is filled with oil (no air bubbles whatsoever), to protect the components from water pressure. The oil compresses very little when Herc is under pressure.
These instruments are a temperature probe, very helpful when you are studying hydrothermal vents, as we were when I took this photo last year, and a scooper for collecting samples. They are held in place with magnets to the "front porch" of the ROV.
This is the other junction box, the one on the port side of Herc.
This titanium tube contains the brain behind the mapping and camera sensors mounted on the rear of the vehicle (as the team was starting to ramp up to get ready for the dive, our tour was cut a little short, so I do not have pictures of those included in this posting).
The top portion of the vehicle is made up of syntactic foam, which is silica-based, and in its raw form resembles a multitude of bubbles cast in glass. This provides the buoyancy for the vehicle (it weighs about 5500 pounds in air, but is neutrally, or just barely positively buoyant, in water). This gives Herc greater maneuverability in the water, and also provides a mechanism for Herc to ascend to the surface if for some reason his tether were to be broken.
The above is part of a multi-part series to run over the next week and a half. Melissa Baffa, Vice President of Program and Volunteer Services for GSCCC, is part of the Corps of Exploration again this year, exploring the deep sea aboard the E/V Nautilus. This blog series chronicles her dive into the Unknown.
¸.·´¯`·.¸.·´¯`·...¸><((((º> `·.¸¸.·´¯`·.¸.·´¯`·...¸><((((º> `·.¸¸.·´¯`·.¸.·´¯`·...¸><((((º>
Want to go on an adventure with me? Skip to the next blog post by clicking here.
Want to catch up on this year's adventure so far? Go back to first blog post for this season.
Want to catch up on what happened last season? Click here to start with the first post from last season.
No comments:
Post a Comment
GSCCC will review comments and respond, as appropriate, in future posts.
Note: Only a member of this blog may post a comment.